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Abstract

Fission gas release and gaseous swelling in nuclear fuel are driven by the trans-

port of fission gas from within the fuel grains to grain boundaries (intra-granular

fission gas release). The process involves gas atom diffusion in conjunction with

trapping in and resolution from intra-granular bubbles, and is described math-

ematically by a system of two partial differential equations (PDE). Under the

assumption of equilibrium between trapping and resolution (quasi-stationary

approximation) the system can be reduced to a single diffusion equation with

an effective diffusion coefficient. Numerical solutions used in engineering fuel

performance calculations invariably rely on this simplification. First, we in-

vestigate the validity of the quasi-stationary approximation compared to the

solution of the general system of PDEs. Results demonstrate that the approxi-

mation is valid under most conditions of practical interest, but is inadequate to

describe intra-granular fission gas release during rapid transients to relatively

high temperatures such as postulated reactivity-initiated accidents (RIA). Then,
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we develop a novel numerical algorithm for the solution of the general PDE sys-

tem in time-varying conditions. We verify the PolyPole-2 algorithm against a

reference finite difference solution for a large number of randomly generated

operation histories including prototypical RIA transients. Results demonstrate

that PolyPole-2 captures the solution of the general system with a high accu-

racy and a low computational cost. The PolyPole-2 algorithm overcomes the

quasi-stationary approximation and the concept of an effective diffusion coeffi-

cient for the solution of the intra-granular fission gas release problem in nuclear

fuel analysis.

Keywords: Fission gas, diffusion, trapping, resolution, nuclear fuel modeling,

intra-granular fission gas release, quasi-stationary approximation, effective

diffusion coefficient, numerical algorithms, modal methods, PolyPole.

1. Introduction

The behavior of the fission gases xenon and krypton in oxide nuclear fuel

significantly affects the fuel rod thermo-mechanical performance in the reactor.

Fission gas retention in the form of bubbles leads to fuel swelling which promotes

pellet-cladding mechanical interaction (PCMI), and the concomitant fission gas

release (FGR) to the fuel rod free volume increases the rod internal pressure.

Moreover, gas release and precipitation in bubbles affect the thermal conduc-

tance of the fuel-cladding gap and the fuel thermal conductivity, respectively.

Also, beyond a certain burnup the fuel swelling rate increases due to the build-up

of gaseous porosity associated with the formation of the sub-micrometric-grain,

high burn-up structure (HBS) in both UO2 [1–5] and MOX [6–9]. Ultimately,

the increased fuel gaseous swelling can severely impact the fuel-cladding con-

tact pressure during PCMI [6,8,10–13]. In particular, PCMI is associated with

potential safety margin reduction for cladding failure during reactivity-initiated

accidents (RIA) in light water reactors [13,14]. Furthermore, considerable FGR

has been observed in RIA simulation tests, which would increase cladding load-

ing and the risk of creep-induced cladding rupture by ballooning [6,15].
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It follows that accurate models of fission gas swelling and release need

to be incorporated in fuel performance codes. In particular, ability to cap-

ture peculiarities of fission gas behavior in high-burnup fuel and during rapid

power/temperature transients is a requisite in order to evaluate fuel performance

during postulated RIA accidents. However, whilst the fission gas behavior in

fuel for moderate burnups is fairly well characterised and such understanding

is reflected in many models (e.g., [16–23]), modeling of fission gas behavior in

high burnup fuel and during transients is still an open issue [3,24–29].

The first and basic stage of FGR and gaseous swelling is gas atom transport

from within the grains to grain boundaries (intra-granular fission gas release).

This involves thermal and irradiation-enhanced lattice diffusion of single gas

atoms in conjunction with trapping in and irradiation-induced resolution from

intra-granular bubbles [18,30–35]. The problem is described mathematically by

a system of two coupled partial differential equations (PDE), with one equation

for the concentration of single gas atoms and one for the gas balance in the

bubbles.

The numerical solution of the intra-granular fission gas release problem in

time-varying conditions has an enormous practical importance in fuel modeling.

In particular, in this work we deal with applications to engineering fuel perfor-

mance modeling, i.e., the thermo-mechanical analysis of the fuel elements using

integral fuel performance codes [36]. In this area of application, the fission gas

behavior model is a component of a broader analysis. Also, because of the time

and spatial discretization of the problem and the non-linearities involved, an

integral fuel performance calculation for a detailed fuel rod irradiation history

comprises a very high number of calls of each local model, including the fission

gas behavior model. It follows that the numerical solution of the intra-granular

fission gas release problem in models applied in integral codes must be compu-

tationally efficient, while still guaranteeing a suitable accuracy. Of course, the

numerical solution may be obtained using standard space-discretization methods

such as finite difference schemes. However, the associated high computational

cost makes standard solution techniques impractical for application in integral
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fuel performance codes [32,37].

Speight [30] derived the concept of an effective diffusion coefficient embody-

ing the effects of trapping and resolution, which reduces the problem of intra-

granular fission gas release to a single diffusion equation. Such a simplified

formulation can be applied to time-varying conditions under the assumption

of instantaneous equilibrium between trapping and resolution (quasi-stationary

approximation). Numerical algorithms have been developed in the past that

provide solutions of the simplified problem at high speed of computation for ap-

plication in engineering calculations [17,37–44]. In this connection, the authors

recently developed an improved numerical algorithm called PolyPole-1 [45].

Speight’s simplified formulation is generally adopted for models employed in

integral fuel performance codes (e.g., [46–50]). To the best of the authors’

knowledge, no numerical algorithm has been developed yet that is able to solve

the general system of PDEs at low computational cost. The development of such

an algorithm is an open issue and simply prevents the inclusion of generally valid

fission gas behavior models in integral codes [32,51].

In this paper, first, we investigate the validity of the quasi-stationary approx-

imation by comparison to the solution of the general system of PDEs. Then,

we develop a novel algorithm to numerically solve the general system of PDEs

at low computational cost. The new algorithm extends the PolyPole-1 concept,

and is called PolyPole-2.

The outline of the paper is as follows. In Section 2, we discuss the mathe-

matical formulation of the intra-granular fission gas release problem. In Section

3, we investigate the validity of the quasi-stationary approximation relative to

the system of coupled PDEs that is the general formulation of the problem. In

Section 4, we present the concept of the PolyPole-2 algorithm for the effective

solution of the general system of PDEs. In Section 5, we verify the PolyPole-2

algorithm through comparisons to accurate finite-difference reference solutions

for a large number of randomly generated operation histories covering both op-

erational conditions and postulated RIAs. Conclusions are drawn in Section

6.
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2. Mathematical problem

The problem of intra-granular fission gas release can be stated mathemati-

cally with the following system of PDEs (e.g., [18,30])


∂c
∂t = D∇2c− gc+ bm+ β

∂m
∂t = +gc − bm

(1)

where c (at·m−3) is the concentration of single gas atoms dissolved in the lat-

tice, m (at·m−3) the concentration of gas atoms in intra-granular bubbles, t

(s) the time, D (m2s−1) the single gas atom diffusion coefficient, g (s−1) the

trapping rate of gas atoms at bubbles, b (s−1) the rate of irradiation-induced

gas atom resolution from bubbles back into the lattice, and β (at·m−3s−1) the

gas generation term.1

1An empirical expression for the diffusion coefficient, D, due to Turnbull et al. [35] is

D = D1 +D2

D1 = 7.6× 10−10 exp
(
− 4.86× 10−19

/
(kT )

)
D2 = 1.41× 10−25

√
F exp

(
− 1.91× 10−19

/
(kT )

) (2)

where D1 (m2s−1) represents intrinsic thermal diffusion, D2 (m2s−1) represents irradiation-

enhanced diffusion, F (m−3s−1) is the fission rate and k (JK−1) the Boltzmann constant.

Based on Ham’s [52] theory for diffusion-limited precipitation at spherical particles, the trap-

ping rate, g, can be calculated as

g = 4πDRN (3)

where R (m) the mean radius of intra-granular bubbles and N (m−3) the bubble number

density. Various theories have been proposed for the mechanisms of resolution [18,53–56].

An expression often adopted for the resolution rate, b, is the one from [18], which is a slight

modification of Turnbull’s [55]

b = 3.03Fπlf (R+ Z0)2 (4)

where lf (m) the length of a fission fragment track and Z0 (m) the radius of influence of a

fission fragment track. The generation rate of fission gas is calculated as

β = Y F (5)
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Figure 1: Sketch representing the mechanisms involved in intra-granular fission gas

release.

Eqs. 1 represent the intra-granular fission gas release problem as gas atom

diffusion (term D∇2c) in conjunction with trapping (gc) in and resolution (bm)

from intra-granular bubbles. The second of Eqs. 1 represents the balance of

the gas in bubbles. Single gas atom diffusion is responsible for gas transport to

grain boundaries (intra-granular fission gas release). The processes described

by Eqs. 1 are represented in Fig. 1.

Note that more detailed formulations of the problem are possible that include

terms of bubble mobility (e.g., [22,57,58]), bubble nucleation (e.g., [22,59]), up

to cluster dynamics models that track the full distribution of bubble sizes and

potentially also consider interactions between species (atom trapping to bubbles

but also bubble to bubble interactions, i.e., coalescence) as well as Brownian and

drift diffusion of each species (e.g., [60]). Cluster dynamics models can be used

to inform reduced-parameter engineering models (such as Eqs. 1). Indeed, they

require dedicated codes and high performance computing power. In this work,

we consider the formulation of the intra-granular fission gas release problem

where Y (/) is the total yield of fission gas atoms. Hence, in general, the parameters of Eqs. 1

vary in time as temperature and power (fission rate) vary during irradiation. In particular, D

and g present rapid variations during transients owing to to their exponential dependence on

the temperature.
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expressed by Eqs. (1). This is the simplest form that includes explicitly the

effects of trapping and resolution, whose consideration is the main focus of the

present work. Extension of the work to more complex formulations is of interest

in perspective.

A further assumption that is generally adopted is that of spherical grain

geometry. The analytic modal solution of Eqs. 1 in spherical geometry for

constant conditions (i.e., constant D, g, b, β) is
c(r,t) = 1√

2πa

∞∑
n=1

sin(λnr)
r [An exp(−pnt) +Bn exp(−qnt) + Cn]

m(r,t) = 1√
2πa

∞∑
n=1

sin(λnr)
r [A′n exp(−pnt) +B′n exp(−qnt) + C ′n]

(6)

where a is the radius of the spherical grain, n is the mode index, λn are the

eigenvalues of the radial part of the spherical Laplacian with Dirichlet boundary

condition (c,m)(r = a, t) = 0 and symmetry condition ∂(c,m)/∂r|r=0 = 0, pn

and qn are the poles of the solution and A, B, C are the time coefficients.

The complete derivation of Eqs. 6 and the expressions for the poles and time

coefficients are provided in Appendix A. In realistic problems, the parameters

in Eqs. 1 vary in time (foonote 1), so that this solution is not directly applicable

to fuel performance calculations. Hence the need for algorithms to numerically

solve the mathematical problem for time-varying conditions.

Speight [30] derived the analytic modal solution of Eqs. 1 in spherical ge-

ometry for constant conditions and with zero initial conditions for c and m.

He then simplified the solution assuming that the rates of trapping and resolu-

tion are high compared to the rate of diffusion to grain boundaries. Under this

assumption, the condition of equilibrium between trapping and resolution, or

stationary condition,

∂m

∂t
= +gc− bm = 0 (7)

is reached rapidly compared to the time scale of diffusion. Eq. 7 corresponds

to the concentrations c and m having reached an equilibrium ratio c/m =
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b/g . Speight showed that the fractional gas release to the grain boundaries

under the above assumption is analogous to the expression derived previously

by Booth [61] for diffusion in the absence of trapping/resolution, but with the

gas atom diffusion coefficient, D, substituted by an effective diffusion coefficient,

Deff = b/(b+ g) D. The correction of the diffusion coefficient accounts for the

reduced apparent diffusion as part of the gas is trapped into immobile bubbles.

Intuitively, if g and b are constant and if gas diffusion to the grain boundaries

is neglected (which is a condition approached if diffusion is slow compared to

trapping and resolution), after sufficient time the gas concentrations m and c

will approach an equilibrium ratio (Eq. 7). White and Tucker [18] noted that

combining Eqs. 1 and 7, and writing the total gas concentration as ct = c+m,

Eqs. 1 can be directly reduced to

∂ct
∂t

= Deff∇2ct + β (8)

which is the equation for pure diffusion with the effective diffusion coefficient

of Speight (and referred to as Speight’s formulation henceforth). A detailed

derivation of Speight’s formulation is given in Appendix B.

The so-called quasi-stationary approximation applies to time-varying condi-

tions and refers to considering that m evolves with a succession of equilibrium

states so that the condition expressed by Eq. 7 is verified at any time. This as-

sumption implies that Eq. 8 is valid for time-varying conditions as well. Thus,

the quasi-stationary approximation is effectively an extension of Speight’s con-

cept to time-varying conditions. However, the quasi-stationary approximation

and Speight’s formulation are generally referred to alike in the literature. In the

remainder of the paper, we also refer to them alike for practical reasons.

Note that derivation of Eq. 8 requires the additional assumption that param-

eters b and g are uniform in space across the domain (grain). Veshchunov and

Tarasov [51] noted that because the trapping rate, g, depends linearly on the

concentration c of dissolved gas (foonote 1), this latter assumption is effectively

an inconsistency as it implies that c(r) is uniform in space (c being subject to

Fickian diffusion, it cannot be considered as uniform in general).
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Efficient numerical algorithms for the solution of Eq. 8, in time-varying con-

ditions have been developed (see, e.g., [37,41,45]). Accordingly, this simplified

formulation is universally adopted for models employed in integral fuel perfor-

mance codes (e.g., [46–50]). To the best of the authors’ knowledge, no algo-

rithms for the solution of the general system, Eqs. 1, efficient enough to be used

effectively in integral codes are available [32,45].

3. Validity of the quasi-stationary approximation

The concept of the quasi-stationary approximation is illustrated in graphical

form in Fig. 2. The general problem, expressed by Eqs. 1 and represented in

Fig. 2a, explicitly describes the time evolution of both concentrations of gas

atoms in solution (c) and in bubbles (m) with two differential equations. Both

the diffusion and trapping/resolution components are explicitly included and

act simultaneously in affecting the gas concentrations. Diffusion only affects

the concentration c (in consequence of the hypothesis of immobile bubbles)

while trapping/resolution affect both c and m. Because trapping and resolu-

tion counteract each other, the ratio of concentrations tends to an equilibrium

condition (Eq. 7). However, in the general non-stationary situation, the ratio of

Figure 2: Graphical representation of (a) the general formulation of the intra-granular

fission gas release problem and (b) Speight’s formulation.
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concentrations can depart from equilibrium. The system will be in such a non-

equilibrium condition following a change in the trapping and/or resolution rates

(g and b, respectively) so that the instantaneous c/m ratio no longer satisfies

Eq. 7 and concentrations move towards a new equilibrium. The time for this

transition is finite. During the non-equilibrium period, the diffusion operator

acts on a concentration c 6= (b/g )m. Under the quasi-stationary approxima-

tion, c and m are at the equilibrium ratio at any time. Hence, the fraction of

the total gas concentration affected by diffusion is at any time c = b/(b+ g) ct

(Eq. 8 and Fig. 2b). The idea of the quasi-stationary approach is that the tran-

sition between states of equilibrium is fast compared to diffusion, hence, the

assumption of instantaneous equilibrium does not lead to a significant error in

the calculated intra-granular fission gas release.

In his review of intra-granular fission gas behavior, Lösönen [32] performed

an investigation of the validity of Speight’s formulation by solving the gen-

eral system, Eqs. 1, using a finite-difference scheme and comparing results to

Speight’s solution. Considering a rectangular initial profile for the gas con-

centration and applying a sudden increase of the diffusion coefficient at the

beginning of the calculation, he showed that during the subsequent time under

constant irradiation conditions, Speight’s solution significantly departed from

the solution of the general system. On this basis, he identified the adoption

of Speight’s formulation as a major weakness of fission gas models used in fuel

performance codes. However, in this study Lösönen made an assumption of

constant gas concentration in bubbles, m (and constant bubble radius) when

applying Speight’s formulation. Indeed, the quasi-stationary approach rather

implies that m evolves with a succession of equilibrium states. This does not

imply by any means that m is constant over time but only that it adjusts in-

stantaneously to a change in the conditions so that equations can be decoupled.

Here, we perform another investigation of the validity of the quasi-stationary

approximation. We solve both the general system, Eqs. 1, and Speight’s for-

mulation, Eq. 8, using identical values for the parameters in either case. We

developed highly accurate finite difference (FD) algorithms for the numerical
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solution of both formulations with time-varying parameters. For more details

on the FD algorithms, see Section 5.1. For these calculations, the algorithms

have been coded in a stand-alone computer program. Although Speight’s for-

mulation turns out to be an excellent approximation of the general problem

for most situations of practical interest, as shown in Section 5.3, we found it

failing to describe transients to relatively high temperatures occurring at the

scale of milliseconds. In terms of reactor conditions of practical interest, these

correspond to postulated RIA transients. Hereafter, we demonstrate this cir-

cumstance for an exemplifying case. An extensive numerical experiment that

substantiates the conclusion is described in Section 5.2.

As a prototypical RIA transient, we consider the CABRI REP-Na 5 power

pulse experiment [6,62]. During the experiment, a UO2/Zircaloy-4 fuel rodlet

was transient-tested with a Gaussian-type power pulse. Full width at half maxi-

mum (FWHM) of the power pulse was 8.8 ms. The analysis considers a location

close to pellet periphery. Time-dependent specific power and temperature are

taken from [25] and are input for the analysis. Time-dependent parameters are

calculated as functions of power (fission rate) and temperature (see footnote 1

for dependencies). Using the aforementioned FD algorithms we solve the intra-

granular fission gas release problem over time for both Eq. 8, which implies the

quasi-stationary approximation, and the general problem, Eqs. 1. We consider

a constant grain radius a = 0.15 µm. This value is typical of UO2 HBS and

smaller than typical grain radii in the regular fuel structure. (See Section 5.2

for an investigation of the effect of the grain size). The analysis is presented in

Fig. 3. The power pulse induces a rapid temperature transient that reaches a

temperature T > 2500 K over tens of milliseconds, and is followed by a cooling

transient that lasts a few hundreds of milliseconds (Fig. 3, top graph).

The heating transient leads to an increase in the gas atom diffusion co-

efficient, D (therefore, in the trapping parameter, g – see footnote 1). The

equilibrium ratio of concentrations, c/m = b/g , is correspondingly reduced.

Consequently, c decreases in favor of m to restore equilibrium, by virtue of the

second of Eqs. 1. As shown in Fig. 3 (second graph from top), the concentra-
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Figure 3: Power and temperature histories for the REP Na-5 power pulse test (top) and

calculation results. Both solutions for the general formulation and the quasi-stationary

approximation were obtained using accurate finite difference algorithms.

tion of single gas atoms, c, calculated under the quasi-stationary approximation

decreases to effectively zero during the heating transient and increases during
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the cooling transient to follow the equilibrium curve. Because the trapping and

resolution rates are finite, there is actually a kinetic effect, with concentrations

departing from equilibrium. This behavior is captured by the solution of the

general system, which is also shown in the figure.

We define an equilibrium non-dimensional group, E, as

E =
gc

bm
(9)

During equilibrium between trapping and resolution, Eq. 7 is verified so that

E = 1. The departure of E from 1 gives a measure of the departure of the

system from equilibrium. As shown in Fig. 3 (third graph from top), the system

reaches E > 105 during the transient considered here. It follows that under

the quasi-stationary approximation, diffusion acts on a concentration c that is

under-estimated during the non-equilibrium period following a heating transient

and consequently, intra-granular fission gas release is under-estimated. During a

rapid transient to high temperature, where departure from equilibrium is strong

and at the same time, the diffusion rate is high, the effect can be significant.

This is illustrated in the bottom plot of Fig. 3, showing that a significant intra-

granular fission gas release is calculated when solving the general system but is

almost completely neglected if the quasi-stationary approximation is applied.

Based on this study, we conclude that while the quasi-stationary approx-

imation holds for most situations of practical interest, for rapid transients to

high temperatures occurring at the scale of milliseconds, such as postulated RIA

transients, the approximation becomes inadequate.

4. PolyPole-2 algorithm

The authors previously presented the development of the PolyPole-1 algo-

rithm for the solution of Speight’s formulation (Eq. 8) in time-varying condi-

tions [45]. Here, we present a new numerical algorithm for the solution of the

general intra-granular fission gas release problem (Eqs. 1) in time-varying con-

ditions. This new algorithm is effectively a generalization of PolyPole-1, and is

called PolyPole-2.
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Similar to PolyPole-1, the development of the new algorithm requires in the

first place knowledge of the analytic modal solution of the mathematical problem

in spherical geometry for constant conditions (i.e., constant parameters D, g, b,

β). Speight [30] derived the analytic modal solution of Eqs. 1 with zero initial

conditions for c and m. The more general solution for nonzero initial conditions

is needed here, because the algorithm is applied at each time step in a fuel

performance calculation with the initial conditions being given at the beginning

of the time step. We derive the analytic modal solution of Eqs. 1 in spherical

geometry for constant parameters and with nonzero initial conditions for c and

m. The complete derivation is provided in Appendix A. The new numerical

algorithm is described hereafter.

We seek an approximate solution, for time-varying parameters, of Eqs. 1

re-written in vectorial form as

∂

∂t
u = (D + E)u+ s (10)

where u = [c m] and s = [β 0] are vectors of the gas concentrations and the

source term, respectively. The diffusion D and exchange E operators are defined

as

D =

D∇2 0

0 0

 (11)

E =

−g +b

+g −b

 (12)

The boundary conditions of Eq. 10 are u(r = a, t) = 0 and ∂u/∂r|r=0 = 0.

The initial condition is u(r, t = 0) = u0(r) = [c0(r) m0(r)].

Note that by replacing in Eq. 10 the diffusion-exchange operator (D+E) by

Db/(b+ g)∇2, the source vector s by β and u by ct = c+m, Eq. 10 reduces to

Eq. 8. The notation of Eq. 10 thus effectively reduces Eqs. 1 to the same form

as Eq. 8. This highlights that the new PolyPole-2 algorithm for the solution

of Eq. 10 is a generalized case of the PolyPole-1 algorithm for the solution of

Eq. 8.
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We seek an approximate solution u∗ of Eq. 10 for the case of time-varying

(D + E) and s. We make the ansatz that the solution can be approximated

with the following modal expansion

u∗(r, t) ≈
∞∑
n=1

z∗n(t)ψn(r) (13)

The time coefficients, z∗n(t), contain the information about the time dependence

of the approximate solution (i.e., the characteristic poles of the system). The

spatial modes of the approximate solution, ψn(r), are taken the same as the

spatial modes of the analytic solution for constant conditions (see Appendix A).

Another fundamental assumption of the PolyPole concept is that the time

coefficients of the approximate solution, z∗n(t), may be expressed as the time

coefficients of the analytic solution for constant conditions, zn(t) (Appendix A),

multiplied by an operator Pn that embodies the information on the deviation

from constant conditions. Thus, we write

z∗n(t) = Pnzn(t) (14)

The operator Pn is applied to each mode of the solution. The formulation

for this operator is comprised of two distinct polynomials of order J

Pn =

1 +
J∑
j=1

pjdt
j 0

0 1 +
J∑
j=1

qjdt
j

 (15)

This definition of Pn is consistent with the polynomial correction factor

used in the PolyPole-1 algorithm [45]. In this way, the problem of finding an

approximate solution for time-varying conditions is shifted to the problem of

finding the coefficients of the polynomials in Pn. To calculate the polynomial

coefficients, pj and qj , 2J equations are needed. This set of equations is obtained

by sampling the time-varying operators, D(t), E(t) and S(t), at J uniformly

distributed instants along the time-step dt. The sets of sampled values, D[j],

E[j] and S[j], contain the information on the variation of the operators along

the time step and are used to calculate the corrective polynomials, as follows.
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The time coefficients z∗(t) defined by Eq. 14 are assumed to satisfy Eq. 28

(Appendix A) at the sampling times t[j], ti ≤ t[j] ≤ ti+1. In vector notation:

∂(Pnzn)

∂t

∣∣∣∣
t[j]

= −Λn[j]Pnzn + 〈ψn|s[j]〉 (16)

where we applied the scalar product defined by Eq. 27 and Λn is an operator

defined as

Λn =

Dn2π2

a2 + g −b

−g +b

 (17)

Eq. 16 defines a linear system of 2J equations for the polynomial coefficients pj

and qj . The time coefficients of the analytic solution for constant conditions,

zn, are calculated through Eqs. 31, with parameters taken as averages of the

sampled values Λn[j] and S[j] along the time step.

The spatial modes, ψn(r), are calculated as per Eq. 25. The PolyPole-

2 solution is then reconstructed as a linear combination of the spatial modes

with the corrected time coefficients, according to Eqs. 13 and 14. The series is

approximated by a finite number of terms (N , number of modes). The value of

N is determined based on a D’Alembert remainder criterion identical to that

used for PolyPole-1 [45].

Similar to PolyPole-1, the newly developed PolyPole-2 algorithm combines

the physical poles of the analytic solution and a polynomial correction to ac-

count for the time dependence of the coefficients. The idea behind the PolyPole

concept is that the spatial dependence of the solution for time-varying condi-

tions can be approximated by the spatial dependence of the solution for constant

conditions, which is known analytically. The deviation from constant conditions

is fully embodied in the time-dependent part of the solution and approximated

by the time coefficients of the solution for constant conditions multiplied by

an appropriate correction. Exploiting an analytic representation of the spatial

dependence avoids using spatial discretization and therefore allows for signif-

icantly lower computational time compared to spatial discretization methods

such as FD schemes. In view of this concept, the algorithm may be labeled as

semi-analytic.
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5. Verification

In this Section, we verify the PolyPole-2 solution against accurate reference

solutions for both RIA conditions and operational conditions through an exten-

sive numerical experiment.

5.1. Setup of the numerical experiment

The numerical experiment consists of the application of the PolyPole-2 al-

gorithm to the numerical solution of Eqs. 1 for a large number of randomly

generated histories. The results from the PolyPole-2 algorithm are compared to

a high-accuracy finite-difference reference solution. This FD algorithm is fully

implicit first order in time and second order in space. An adaptive time step

control is included, based on the estimation of the second-order error calculated

as the difference between the explicit and implicit solutions [63].2 The adaptive

time stepping scheme ensures that the second-order error of the FD solution is

always lower than a prescribed tolerance. For this numerical experiment, we set

the tolerance of the reference FD algorithm to 10−6. A more detailed descrip-

tion of the method is given in [45]. Note that relative to [45], we extended the

FD algorithm to the solution of Eqs. 1.

For these calculations, the algorithms have been coded in a stand-alone com-

puter program. The random histories, both for RIAs and operational conditions,

are in terms of temperature and fission rate. From the input time-dependent

temperature and fission rate, the program calculates the time-dependent pa-

rameters3 in the diffusion and exchange operators, D(t) and E(t), and in the

source term, s (Section 4). Then, the program computes the solution of the

2The explicit scheme is applied at each time step with the only purpose of estimating the

second-order error. The reference solution is calculated by application of the implicit scheme.
3We use the expressions for the diffusion coefficient, D, by Turnbull et al. [35], the resolu-

tion rate, b, by White and Tucker [18], the trapping rate, g, by Ham [52], and a value of 0.3

for the total yield of fission gas atoms. See also footnote 1. For the purpose of this numerical

experiment, as long as values and dependencies are realistic, the specific choices are arbitrary.
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intra-granular fission gas release problem with both the reference FD and the

PolyPole-2 algorithms.4

The figure of merit chosen for the verification of the numerical solution is the

fractional intra-granular fission gas release at the end of each history, defined as

f =
c̄created(tend)− c̄(tend)− m̄(tend)

c̄created(tend)
(18)

where c̄created(tend) (at·m−3) is the integral of β(t) from 0 to the final time of

each random history, tend.

5.2. RIA conditions

In order to verify the PolyPole-2 algorithm for RIA transients, we considered

500 histories randomly generated within a range of realistic RIA conditions.

Ranges were determined based on the sensitivity study from Jernkvist [64]. In

particular, the RIA random histories have the following characteristics:

• The FWHM of the power pulse, τRIA, is a random variable, sampled uni-

formly in the range 20–60 ms.

• The total specific energy injected, ERIA, is a random variable, sampled

uniformly in the range 400–800 J·(gUO2
)−1.

• The maximum specific power reached, PRIA (W·g−1), is calculated as

PRIA = 62.5 · ERIA/τRIA [25].

• The power pulse shape is calculated according to the Nordheim-Fuchs

model [25].

• The initial temperature, T0 (K), is calculated as T0 = 883 · (5 ·10−4ERIA +

0.7772) (uniform in the range 863–1039 K). This correlation is derived

from the results of the RIA sensitivity analysis from [64].

4For this numerical experiment, we use second-order corrective polynomials (i.e., J = 2 in

Eq. 15) in PolyPole-2. Also, we use a limiting value of 10−7 for the D’Alembert remainder.
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• The maximum temperature reached, Tmax (K) is calculated as Tmax =

2564 · (5 · 10−4ERIA + 0.7772) (uniform in the range 2506–3017 K) [64].

• The maximum temperature is reached after 2τRIA. The temperature in-

crease in time is calculated based on the integral of the power pulse.

• The final time is fixed at 300 ms.

• The final temperature, Tend (K), is calculated as Tend = 1227·(5·10−4ERIA+

0.7772) and is sampled uniformly in the range 1200–1444 K [64].

In addition, prior to the RIA transient a period of 100 hours at constant

temperature T0 is considered, in order to establish the condition of equilibrium

between trapping and re-solution before the transient begins.

In the study we also consider the effect of grain size. In particular we consider

two values for the grain radius, i.e., (1) a value of 5 µm that is typical for the

regular structure of oxide fuel and (2) a value of 0.15 µm that is representative

of the high burnup structure (e.g., [4,5]).5 We divide the 500 random histories

for this numerical experiment into two subsets of 250 histories each. The two

subsets differ by the considered grain size. The value of the grain radius is time-

independent during the calculations. This is for simplicity and in order to isolate

the solution of the intra-granular fission gas release mathematical problem from

other effects such as grain growth or recrystallization. Note that the PolyPole

algorithms are also applicable to problems with time-varying grain size in fuel

performance calculations.

As for the initial conditions at the beginning of the simulation, for the cal-

culations with a grain radius of 5 µm we consider an initial gas concentration

5In fact it remains to be ascertained whether the mechanisms of intra-granular FGR in the

HBS are analogous to the regular fuel structure. Some experiments indicated that the small

grains of the HBS in the examined samples were depleted of intra-granular defects and gas

bubbles [65], or that the density of intra-granular bubbles was much lower than that found in

the regular fuel structure [66]. However, other experiments demonstrated the presence of a

high density of intra-granular HBS bubbles [67]. This is worth further investigation in future

studies of fission gas behavior in the HBS.
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corresponding to the gas generated during an irradiation up to 50 GWd/t. All

gas is assumed to be stored in the grains initially. For the calculations with a

grain radius of 0.15 µm, the initial concentration is set to 1026 at·m−3, which

corresponds approximately to the asymptotic gas concentration achieved in the

HBS grains [68]. As for the gas distribution, for both sets of simulations we

consider 70% of the gas in solution and 30% in bubbles, initially [18]. For

equilibrium between trapping and resolution (Eq. 7), this corresponds to a ra-

tio b/(b+ g) = 0.7, which is realistic for typical values of the resolution and

trapping rates.

The results of the numerical experiment are presented in Fig. 4 on a linear

scale. Each data point in this figure corresponds to one of the randomly gen-

erated operation histories and represents the intra-granular fission gas release

(Eq. 18) obtained with the PolyPole-2 algorithm versus the reference FD solu-

tion. The deviation from the 45° line is a measure of the accuracy of PolyPole-2.

Results appear to be distributed between two clusters of data points. The

higher intra-granular fission gas release results (5–15%, approximately) corre-

spond to the simulations with the smaller grain radius equal to 0.15 µm. With

a small grain radius diffusion to grain boundaries occurs at a higher rate (con-

sidering a pure diffusion problem as a first approximation, the diffusion rate is

∼ D
/
a2 ), thus leading to higher intra-granular fission gas release compared to

behavior with larger grains. These results indicate that the PolyPole-2 and ref-

erence solutions are very close for all of the 250 random histories in this subset

of calculations. In Fig. 4, we also show the results from the FD solution of Eq. 8

(which implies the quasi-stationary approximation) for the same input histories.

Results demonstrate that the quasi-stationary approximation is inadequate to

describe the fast transients to relatively high temperatures (RIAs) considered

in this study. In particular, the approximation leads to a strong (nearly 100%)

under-prediction of the higher intra-granular fission gas release values.

Results are presented in Fig. 5 on a logarithmic scale. It is confirmed that

the PolyPole-2 algorithm calculates the solution of the general system of PDEs

with very good accuracy. Again, the clusters of data points at higher intra-
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Figure 4: Linear-scale comparison between intra-granular fission gas release calculated

by the PolyPole-2 algorithm and the reference FD algorithm for the general PDE

system. The corresponding FD solutions for the quasi-stationary approximation are

also included. Each data point corresponds to a calculation with randomly generated

RIA conditions.

granular fission gas release refer to the simulations with the smaller grain radius

of 0.15 µm. It becomes apparent that also for the simulations with the larger

grain radius of 5 µm, results under the quasi-stationary approximation are sig-

nificantly under-predicted. However, intra-granular fission gas release for this

set of simulations is lower. This is due to a larger grain size which is associated

with a lower gas diffusion rate. In particular, values of ≈0.1-0.3% are calcu-

lated, which are of the order of the total FGR during a typical base irradiation.

Note that the accuracy of the PolyPole-2 algorithm in this region can be fur-

ther improved by considering a higher number of modes in the series expansion,

i.e., by tightening the tolerance in the D’Alembert remainder criterion. Again,

under the quasi-stationary approximation intra-granular fission gas release is

effectively neglected.

Besides accuracy, speed of computation is an essential feature for an algo-
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Figure 5: Logarithmic-scale comparison between intra-granular fission gas release cal-

culated by the PolyPole-2 algorithm and the reference FD algorithm for the general

PDE system. The corresponding FD solutions for the quasi-stationary approxima-

tion are also included. Each data point corresponds to a calculation with randomly

generated RIA conditions.

rithm to be effectively employed in an integral fuel performance code. The com-

putational times (i.e., the time taken for each simulation) for the PolyPole-2 and

FD algorithms are compared in Fig. 6. The computational time associated with

the PolyPole-2 algorithm is approximately two orders of magnitude lower than

that associated with the FD algorithm. The computational time of PolyPole-2
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Figure 6: Comparison between the computational times associated with the FD and

PolyPole-2 algorithms for the solution of the general PDE system. Each data point

corresponds to a calculation with randomly generated RIA conditions.

is roughly two times higher than that of PolyPole-16, which in turn is in line

with state-of-the-art algorithm used in fuel performance codes, as demonstrated

in [45]. Such efficiency of computation, combined with the demonstrated accu-

racy, makes PolyPole-2 suitable for implementation in any fuel performance

code.

5.3. Operational conditions

The verification of the PolyPole-2 algorithm for RIA transients presented in

Section 5.2 confirms that PolyPole-2 provides an accurate solution for conditions

where solving the general PDE system to capture non-equilibrium behavior is

of significance compared to the quasi-stationary approximation. In this Section,

we verify PolyPole-2 also for operational conditions, where the quasi-stationary

6This appears consistent with the fact that a double amount of operations is required

for PolyPole-2 to solve the two-equation system relative to the single-equation solution of

PolyPole-1
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approximation is valid, in order to confirm its general applicability. The numer-

ical experiment for this comparison is comprised of 1000 randomly generated

operation histories with the following characteristics

• Each individual history is piecewise-linear with varying temperature and

fission rate.

• In each individual history, the following quantities are considered as ran-

dom variables (sampled from uniform distributions):

– number of linear steps (1−50);

– time duration of each linear steps (0−1000 h);

– temperature (300−2700 K);

– fission rate (0−3 · 1019 fiss m−3 s−1).

Using accurate finite difference algorithms for both the quasi-stationary and

general formulations, we have separately verified that for these operational con-

ditions the difference between solutions obtained with the two formulations is

negligible and thus the quasi-stationary approximation is valid. The PolyPole-1

algorithm previously developed by the authors has been indipendently verified

to provide an accurate solution to the problem in this case [45]. Clearly, the

quasi-stationary approximation is a particular case of the general formulation

and under conditions where the approximation is valid, PolyPole-2 must closely

match the PolyPole-1 solution. The results of the numerical experiment are

presented in Fig. 7. Each data point in these figures corresponds to one of the

randomly generated operation histories and represents the intra-granular fission

gas release (Eq. 18) obtained with the PolyPole-2 algorithm versus the reference

(PolyPole-1) solution. Results indicate that the solutions are very close for all

of the 1000 random histories considered and therefore the PolyPole-2 solution

correctly reduces to the quasi-stationary solution for operational conditions.
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Figure 7: Comparison between the values of intra-granular fission gas release calculated

with the PolyPole-2 and the PolyPole-1 algorithms. Each data point corresponds to a

calculation with randomly generated operational conditions.

6. Conclusions

In this paper, first, we presented an investigation of the quasi-stationary

approximation adopted in the calculation of intra-granular fission gas release

in current fuel performance codes. Results demonstrated that the approxima-

tion is valid for most situations of practical interest, but is inadequate to model

intra-granular fission gas release during rapid transients to relatively high tem-

peratures such as postulated RIA accidents. Second, to overcome the quasi-

stationary approximation, we developed a novel algorithm to numerically solve

the general system of coupled PDEs in time-varying conditions at low compu-

tational cost. This new algorithm, called PolyPole-2, is based on the analytic

modal solution of the PDE system for constant conditions, with the addition

of polynomial corrective terms that embody the information on the deviation

from constant conditions. We verified PolyPole-2 by comparing the results to a

reference finite difference solution over a large number of randomly generated op-
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eration histories, including postulated RIA transients. The results demonstrate

that PolyPole-2 solves the general PDE system with high accuracy in all consid-

ered situations. Also, computational times associated with PolyPole-2 are sub-

stantially lower than those of finite difference algorithms. Thus, PolyPole-2 can

be applied to any fuel performance code to accurately compute intra-granular

fission gas release during both operational conditions and fast transients.

The PolyPole-2 algorithm provides an accurate and computationally effi-

cient solution of the general problem of intra-granular fission gas release dur-

ing non-equilibrium trapping and resolution. Hence, it overcomes the quasi-

stationary approximation and the concept of an effective diffusion coefficient.

Currently, the PolyPole-2 algorithm is implemented in the BISON fuel perfor-

mance code [49,69] and is also available as a stand-alone program.

The concept of PolyPole-2 not only provides a means to solve the mathemat-

ical problem considered in this paper but more in general, opens the possibility

to calculate intra-granular fission gas release in fuel performance codes accord-

ing to systems of coupled PDEs. The algorithm can be adapted to solving more

general formulations, for instance, including terms for bubble motion and/or

nucleation. Although reducing these more general problems also to a single dif-

fusion equation with an effective diffusion coefficient may be possible for specific

cases (e.g., [58,70]), in general, coupled PDEs need to be considered explicitly.

Application of the concept to increasingly complex formulations is of interest in

perspective.

Acknowledgments

This work was supported at Idaho National Laboratory by the U.S. Depart-

ment of Energy Scientific Discovery through Advanced Computing (SciDAC)

project on Simulation of Fission Gas, the Nuclear Energy Advanced Modeling

and Simulation (NEAMS) program and the Consortium for Advanced Sim-

ulation of Light Water Reactors (CASL). Support at JRC-Karlsruhe by the

GENTLE Project 198236 is also acknowledged. This research contributes to

26



the U.S.-EURATOM International Nuclear Energy Research Initiative (INERI)

project 2017-004-E on Modeling of Fission Gas Behavior in Uranium Oxide Nu-

clear Fuel Applied to Engineering Fuel Performance Codes. The work is also

part of the R&D activities carried out by POLIMI in the framework of the

IAEA Coordinated Research Project FUMAC (CRP-T12028, Fuel Modelling

under Accident Conditions) and it contributes to the Joint Programme on Nu-

clear Materials (JPNM) of the European Energy Research Alliance (EERA), in

the specific framework of the COMBATFUEL Project.

The authors are grateful to Prof. Klaus Lassmann for his review of the work

and valuable advice, and to Charles Folsom (INL) for his help in the definition

of the numerical experiment.

The submitted manuscript has been authored by a contractor of the U.S.

Government under Contract DE-AC07-05ID14517. Accordingly, the U.S. Gov-

ernment retains a non-exclusive, royalty free license to publish or reproduce the

published form of this contribution, or allow others to do so, for U.S. Govern-

ment purposes.

Data availability

The data generated during the current study are available from the corre-

sponding author on request.

References

[1] J. Spino, J. Rest, W. Goll, C.T. Walker, Matrix swelling rate and cavity

volume balance of UO2 fuels at high burn-up, Journal of Nuclear Materials

346 (2005) 131–144.

[2] T. Tverberg, The high burn-up disk irradiation test, IFA-655: Final report

on the in-pile performance, Tech. Rep. HWR-837, Halden Reactor Project

(2008).

27



[3] P. Blair, Modelling of fission gas behaviour in high burnup nuclear fuel,
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[39] L. Väth, Approximate treatment of the grain-boundary loss term in fission

gas release models, Journal of Nuclear Materials 99 (1981) 324–325.

31



[40] K. Forsberg, A.R. Massih, Fission gas release under time-varying condi-

tions, Journal of Nuclear Materials 127 (1985) 141–145.

[41] K. Lassmann, H. Benk, Numerical algorithms for intragranular fission gas

release, Journal of Nuclear Materials 280 (2000) 127–135.

[42] P. Lösönen, Methods for calculating diffusional gas release from spherical

grains, Nuclear Engineering and Design 196 (2000) 161–173.

[43] P. Hermansonn, A.R. Massih, An effective method for calculation of dif-

fusive flow in spherical grains, Journal of Nuclear Materials 304 (2002)

204–211.

[44] J.-S. Cheon, Y.-H. Koo, B.-H. Lee, J.-Y. Oh, D.-S. Sohn, A two-zone

method with an enhanced accuracy for a numerical solution of the diffusion

equation, Journal of Nuclear Materials 359 (2006) 139–149.

[45] D. Pizzocri, C. Rabiti, L. Luzzi, T. Barani, P. Van Uffelen, G. Pastore,

PolyPole-1: An accurate numerical algorithm for intra-granular fission gas

release, Journal of Nuclear Materials 478 (2016) 333–342.

[46] Y. Rashid, R. Dunham, R. Montgomery, Fuel Analysis and Licensing Code:

FALCON MOD01 – Volume 1: Theoretical and Numerical Bases, Tech.

Rep. EPRI-1011307 (2004).

[47] M. Suzuki, H. Saitou, Y. Udagawa, F. Nagase, Light Water Reactor

Fuel Analysis Code FEMAXI-7; Model and Structure, Tech. Rep. JAEA-

data/code 2013-005 (2013).

[48] K. Lassmann, A. Schubert, P. Van Uffelen, C. Györi, J. van de
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Appendix A

Analytic solution of the general system of PDEs for constant condi-

tions

In this Appendix, we derive the analytic solution of Eqs. 1 for constant

conditions and nonzero initial conditions. The considered mathematical problem

is
∂c
∂t = D∇2c− gc+ bm+ β

∂m
∂t = +gc − bm

(19)

where all symbols have been defined in Section 2.

We make the ansatz that c(r, t) and m(r, t) can be written as a linear com-

bination of spatial modes
c(r,t) =

∞∑
k=1

xk(t)ψk(r)

m(r,t) =
∞∑
k=1

yk(t)ψk(r)
(20)

where ψk(r) are the spatial modes and xk(t) and yk(t) are the time coefficients.

35



Defining the vectors

u(r, t) =

 c(r, t)
m(r, t)

 (21)

and

zk(t) =

xk(t)

yk(t)

 (22)

Eq. 20 can be re-written in the form

u(r, t) =

∞∑
k=1

zk(t)ψk(r) (23)

which makes evident that we are assuming the same spatial modes for both c

and m. This vector notation is preferred in the rest of the manuscript (Section

4). In this Appendix, we adopt instead the notation of Eq. 20 for clarity.

Substituting Eqs. 20 into Eqs. 19 leads to
∞∑
k=1

ψk
∂xk

∂t =
∞∑
k=1

[
xkD∇2ψk − gxkψk + bykψk

]
+ β

∞∑
k=1

ψk
∂yk
∂t =

∞∑
k=1

[+gxkψk − bykψk]
(24)

where time and space dependencies are omitted.

The spatial modes ψk(r) are chosen as the eigenfunctions of the radial part of

the spherical Laplacian, satisfying the Dirichlet boundary condition (c,m)(r =

a, t) = 0 and the symmetry condition ∂(c,m)/∂r|r=0 = 0, i.e., the normalized

cardinal sines

ψk(r) =
1√
2πa

sin(λkr)

r
(25)

with the eigenvalues

λk =
kπ

a
(26)

The eigenfunctions defined by Eq. 25 are orthonormal with respect to the

scalar product

〈ψn|ψk〉 =

∫ a

0

4πr2ψnψkdr (27)
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Projecting Eqs. 24 on the spatial modes according to Eq. 27 results in
dxn

dt = −δnxn − gxn + byn + βn

dyn
dt = +gxn − byn

(28)

where δn = Dn2π2/a2 and βn = 〈ψn|β〉. This a set of two linear first or-

der differential equations. After defining the projected initial conditions as

(xn,0, yn,0) = 〈ψn|(c0,m0)〉, Eqs. 28 can be solved via Laplace transformsXn = xn,0 − δnXn − gXn + bYn + βn

s

sYn = yn,0 + gXn − bYn
(29)

where transformed variables are in capital letters. This algebraic system is

solved for

Xn =
xn,0s

2 + (bxn,0 + byn,0 + βn)s+ bβn
s[s2 + (b+ g + δn)s+ bδn]

Yn =
yn,0s

2 + (gxn,0 + gyn,0)s+ gβn
s[s2 + (b+ g + δn)s+ bδn]

(30)

The inverse transform of Eqs. 29 gives the solution of Eqs. 28 in the form

xn(t) = An exp(−pnt) +Bn exp(−qnt) + Cn

yn(t) = A′n exp(−pnt) +B′n exp(−qnt) + C ′n (31)

The solution of Eqs. 19 is obtained as linear combination of the spatial modes

(Eq. 25) and the time coefficients (Eqs. 31)
c(r,t) = 1√

2πa

∞∑
n=1

sin(λnr)
r [An exp(−pnt) +Bn exp(−qnt) + Cn]

m(r,t) = 1√
2πa

∞∑
n=1

sin(λnr)
r [A′n exp(−pnt) +B′n exp(−qnt) + C ′n]

(32)

which is the solution in spherical geometry for constant conditions of the general

system of PDEs for intra-granular fission gas release. The expressions for the

coefficients and for the poles of Eqs. 31 are given in Table 1.
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We define the spatially averaged concentrations in the grain as

(c̄(t), m̄(t)) =

∫ a
0

4πr2 (c(r, t),m(r, t)) dr
4
3πa

3
(33)

Integrating Eqs. 32 according to Eq. 33 we obtain the spatially averaged solution

c̄(t) = βa2

15D

[
1 + 90

π4

∞∑
n=1

1
n4

(
qn
b

b−pn
pn−qn exp(−pnt) + pn

b
b−qn
qn−pn exp(−qnt)

)]
+c0

6
π2

∞∑
n=1

1
n2

(
− b−pn
pn−qn exp(−pnt) + b−qn

qn−pn exp(−qnt)
)

+m0
6
π2

∞∑
n=1

1
n2

(
− b
pn−qn exp(−pnt) + b

pn−qn exp(−qnt)
)

m̄(t) = βa2

15D
g
b

[
1 + 90

π4

∞∑
n=1

1
n4

(
qn

pn−qn exp(−pnt) + pn
qn−pn exp(−qnt)

)]
+c0

6
π2

∞∑
n=1

1
n2

(
− g
pn−qn exp(−pnt)− g

qn−pn exp(−qnt)
)

+m0
6
π2

∞∑
n=1

1
n2

(
b−qn
pn−qn exp(−pnt) + b−pn

qn−pn exp(−qnt)
)

(34)

Appendix B

Derivation of Speight’s formulation

In this Appendix, we derive Speight’s formulation for the problem of intra-

granular fission gas release in presence of trapping and resolution. Following a

slightly different procedure than Speight’s [30], we demonstrate that the solu-

tion of the general problem (Appendix A) reduces to the solution of a single

diffusion equation with an effective diffusion coefficient (Eq. 8), under the same

assumptions applied by Speight. Note that, while Speight limited his derivation

to the case of zero initial conditions for the gas concentration, we deal with the

more general case of nonzero initial conditions.

Like Speight’s, our procedure is based on the analytic solution of the general

problem for constant conditions. We seek the solution in terms of the total

concentration of intra-granular gas, ct = c+m. Also, we consider the spatially

38



Table 1: Expressions for the coefficients and poles in the solution of the general system

of PDEs for constant conditions, Eq. 32.

Parameter Expression

pn
1
2

[
(b+ g + δn) +

√
(b+ g + δn)2 − 4bδn

]
qn

1
2

[
(b+ g + δn)−

√
(b+ g + δn)2 − 4bδn

]
An

1
pn−qn

[
(b− qn)xn,0 + byn,0 + βn

δn
qn

]
Bn

1
pn−qn

[
(b− pn)xn,0 + byn,0 + βn

δn
pn

]
Cn

βn

δn

A′n
1

pn−qn

[
gxn,0 + (g − qn + δn)yn,0 + βn

δn

g
b qn

]
B′n

1
pn−qn

[
gxn,0 + (g − pn + δn)yn,0 + βn

δn

g
b pn

]
C ′n

βn

δn

g
b

averaged concentrations in the grain. Summation of Eqs. 34 yields for the total

concentration

c̄t(t) = (c̄+ m̄) (t) =

=
βa2

15D

[
1 +

g

b
+

90

π4

∞∑
n=1

1

n4

(
qn
b

b− pn
pn − qn

+
g

b

qn
pn − qn

)
exp(−pnt)

]
+

+
βa2

15D

[
90

π4

∞∑
n=1

1

n4

(
pn
b

b− qn
qn − pn

+
g

b

pn
qn − pn

)
exp(−qnt)

]
+

+c0
6

π2

∞∑
n=1

1

n2

(
− b− pn
pn − qn

− g

pn − qn

)
exp(−pnt)+

+c0
6

π2

∞∑
n=1

1

n2

(
− b− qn
qn − pn

− g

qn − pn

)
exp(−qnt)+

+m0
6

π2

∞∑
n=1

1

n2

(
− b

pn − qn
+

b− qn
pn − qn

)
exp(−pnt)+

+m0
6

π2

∞∑
n=1

1

n2

(
b

pn − qn
+

b− pn
qn − pn

)
exp(−qnt)

(35)

In line with Speight, we apply the assumption that trapping and resolution
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act on a smaller time scale than diffusion, i.e., a fission gas atom will experience,

on average, many trapping and resolution events at bubbles before reaching the

grain boundary. This can be expressed as

b+ g >> δn = Dn2π2
/
a2 (36)

Clearly, the hypothesis expressed by Eq. 36 holds only for modes n < n0, with

n0 being a finite number. In the following, we derive the approximate solution

of the problem applying Eq. 36, then we show a posteriori that the formulation

holds with n < n0 under a further hypothesis applied to time t. Such further

hypothesis also is analogous to that proposed by Speight.

Under the hypothesis expressed by Eq. 36, the expression for the poles qn of

the system (Table 1)

qn =
1

2

[
(b+ g + δn)−

√
(b+ g + δn)

2 − 4bδn

]
(37)

can be simplified as follows

qn ≈
1

2

[
(b+ g)−

√
(b+ g)

2 − 4bδn

]
=

=
1

2
(b+ g)

[
1−

√
1− 4bδn

(b+ g)
2

]
'

' 1

2
(b+ g)

[
1−

(
1− 2bδn

(b+ g)
2

)]
=

=
b

b+ g
δn

(38)

Consider also the following approximations in the pre-exponential factors in
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Eq. 35

qn
b

b− pn
pn − qn

+
g

b

qn
pn − qn

≈
(b+ g)

b

b+ g
δn − bδn

b

(
b+ g − b

b+ g
δn

) = 0

pn
b

b− qn
qn − pn

+
g

b

pn
qn − pn

≈ (b+ g)2 − bδn

b

(
b

b+ g
δn − (b+ g)

) ≈ −b+ g

b

− b− pn
pn − qn

− g

qn − pn
≈ − (b+ g)− (b+ g)

b+ g − b

b+ g
δn

= 0

− b− qn
qn − pn

− g

qn − pn
≈ −

b+ g − b

b+ g
δn

b

b+ g
δn − (b+ g)

= +1

− b

pn − qn
+

b− qn
pn − qn

≈
−b+ b− b

b+ g
δn

b+ g − b

b+ g
δn

≈ 0

b

pn − qn
+

b− pn
qn − pn

≈ −b+ b− (b+ g)

b

b+ g
δn − (b+ g)

≈ +1

(39)

Substituting Eqs. 38 and 39 into Eq. 35, one gets

c̄t(t) ≈ ct0
6

π2

∞∑
n=1

1

n2
exp

(
− b

b+ g
δnt

)
+

+
βa2

15D

b+ g

b

[
1− 90

π4

∞∑
n=1

1

n4
exp

(
− b

b+ g
δnt

)] (40)

After successive terms in the summations, the exponentials assume a value

which is negligible with respect to unity for values of n > n0 such that

b

b+ g
δn0

t = qn0
t =

Dbn0
2π2

a2 (b+ g)
t ≈ 5 (41)

and the hypothesis expressed by Eq. 36 becomes, by substitution,

bt >> 5 (42)

which is the time condition under which Eq. 36 holds, as also shown in [30].
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Under the condition expressed by Eq. 41, Eq. 40 becomes

c̄t(t) ≈ ct0
6

π2

n0∑
n=1

1

n2
exp

(
− b

b+ g
δnt

)
+

+
βa2

15D

b+ g

b

[
1− 90

π4

n0∑
n=1

1

n4
exp

(
− b

b+ g
δnt

)] (43)

As demonstrated in [45], Eq. 43 can be obtained as the truncation of the

spatially averaged solution of the following equation

∂ct
∂t

=
b

b+ g
D∇2ct + β (44)

Equation 44 can be written as

∂ct
∂t

= Deff∇2ct + β (45)

which corresponds to Eq. 8. Deff = b/(b+ g) D is the effective diffusion coeffi-

cient of Speight [30]. Hence, as previously demonstrated by Speight, under the

applied assumptions the problem of intra-granular fission gas release reduces to

an expression (Eq. 45) formally analogous to the formulation of Booth [61] for

the case of diffusion of single gas atoms in the absence of trapping and resolution,

with a reduced (effective) diffusion coefficient.

42


	4858
	4858

